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We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean
�effective� radius, number, surface area, and volume concentration, and complex refractive index from
multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that
solution for which the discrepancy reaches its global minimum, in our algorithm we perform the aver-
aging of solutions in the vicinity of this minimum. This averaging stabilizes the underlying ill-posed
inverse problem, particularly with respect to the retrieval of number concentration. Results show that,
for typical tropospheric particles and 10% error in the optical data, the mean radius could be retrieved
to better than 20% from a lidar on the basis of a Nd:YAG laser, which provides a combination of
backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The
accuracy is improved if the lidar is also equipped with a hydrogen Raman shifter. In this case two
additional backscatter coefficients at 416 and 683 nm are available. The combination of two extinction
coefficients and five backscatter coefficients then allows one to retrieve not only averaged aerosol pa-
rameters but also the size distribution function. There was acceptable agreement between physical
particle properties obtained from the evaluation of multiwavelength lidar data taken during the Lin-
denberg Aerosol Characterization Experiment in 1998 �LACE 98� and in situ data, which were taken
aboard aircraft. © 2002 Optical Society of America
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1. Introduction

Tropospheric aerosols play an important role in the
Earth’s radiation budget. Increased aerosol loading
directly affects incident short-wave radiation
through increased scattering and absorption. In ad-
dition, an increase in aerosol number density can
influence the probability of and composition of water
clouds in the troposphere by creating more nucleation
sites for water droplets. This indirect effect of aero-
sols1 can lead to clouds of higher albedo and greater
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persistence. These changes in cloud properties also
have a strong effect on the Earth’s radiation budget.
Quantifying these aerosol effects is difficult, however.
In the most recent Intergovernmental Panel on Cli-
mate Change �IPCC� report,2 large uncertainties
were attributed to both the direct and the indirect
effect of aerosols. Depending on the amount of ab-
sorption by the aerosol, the direct effect on atmo-
spheric radiation can be either positive or negative
whereas the indirect effect can be as large as �2
W�m2, which by itself could be responsible for as
much as a 1–2 K cooling at the surface.

Experimental techniques that could permit a re-
mote quantification of aerosol properties, particularly
if cloud measurements could be made simultaneously
and in the same volume, would provide valuable new
tools for studying the influence of aerosols on climate.
Here improvements we present in the retrieval al-
gorithms for the remote determination of aerosol
properties using one such technique based on multi-
wavelength Raman lidar.

During the past 30 years numerous inversion tech-
niques have been proposed for the retrieval of physical
20 June 2002 � Vol. 41, No. 18 � APPLIED OPTICS 3685



particle parameters from measurements of respective
optical properties at multiple wavelengths.3–9 These
techniques are generally used in passive remote sens-
ing, as, for example, in sunphotometry, which provides
columnar-integrated aerosol properties. In contrast,
active remote-sensing instruments, e.g., lidar systems,
offer the opportunity to perform measurements of
optical parameters with high vertical resolution.
For this reason there have been numerous previous
attempts to transfer the experience accumulated in
passive remote sensing to the field of lidar remote
sensing.10

Unfortunately, the results of these attempts are
not satisfying. The main obstacles in the applica-
tion of these methods to lidar remote sensing was the
poor accuracy of the retrieved particle backscatter
and extinction coefficients11 compared with passive
instruments, and the small number of radiated wave-
lengths. Considerable accuracy of the input optical
parameters is required for the retrieval of physical
parameters by use of the underlying mathematical
models, which are called ill-posed inverse problems
and are characterized by a nonunique solution space
for a given optical data set.12–15

Attempts were made to overcome these problems
by use of a large number of a priori assumptions
about the investigated solution space. Particle com-
plex refractive index and shape of the size distribu-
tion were assumed to be known. Basically the
developed techniques consisted of forward schemes
for which optical data were calculated with the above-
mentioned assumptions and then compared with the
experimental data. It became possible to derive,
e.g., the particle mean radius.16–20 Unfortunately,
the highly stringent a priori assumptions allowed
only stratospheric particle parameters to be derived,
because in this case the particle refractive index and
the shape of the size distribution are rather well
known.19 However, most of the atmospheric parti-
cles are concentrated in the troposphere, where they
exhibit large temporal and spatial variability. In
addition, the chemical and physical properties are
highly diverse. Consequently, it remained impossi-
ble to provide an accurate assessment of their influ-
ence on, e.g., the Earth’s radiation budget, which is
one of the major issues in climate research.2

It was not until the end of the 1990s that a new
approach proved to be successful. A new highly so-
phisticated scanning six-wavelength, eleven-channel
aerosol lidar,21 which makes use of the powerful Ra-
man lidar technique, was set up at the Institute for
Tropospheric Research �ITR�. The independent
measurement of signals that describe aerosol back-
scatter and extinction23–26 on the basis of the detec-
tion of Raman signals permits the retrieval of highly
accurate profiles of the particle backscatter coeffi-
cients at 355, 400, 532, 710, 800, and 1064 nm and of
particle extinction coefficients at 355 and 532 nm.

A specifically designed inversion scheme,13,15,27 de-
veloped at the ITR, and which is based on the concept
of Tikhonov’s regularization,3,4 then allowed us to
process this optical information into physical proper-

ties. This method of inversion with regularization
followed from previous studies, dating back to the
late 1970s,28–32 in which it could be shown that the
introduction of basis functions and physical con-
straints, such as positivity and smoothness of the
derived size distribution allowed the effective radius,
volume, surface area, and number concentration to be
derived.32 The constraints are formulated as so-
called penalty terms. The goal of the inversion is to
minimize these terms, which stabilize the underlying
ill-posed problem.3,4

A major breakthrough in particle characterization
was obtained with the ITR algorithm when it was
shown that the combined use of particle backscatter
and extinction coefficients permitted not only the
mean and integral parameters of particle size distri-
butions to be derived, but also their mean complex
refractive index. Consequently it became possible to
calculate the single-scattering albedo,15,33,34 which is
one of the most important parameters in climate im-
pact studies. Because the retrieval scheme requires
high accuracy of the input optical data, preferably in
the range of better than 20%,14,15 the Raman lidar
technique again proved to be the key to a successful
particle characterization.

However several obstacles remain to be resolved.
From an instrumental point of view, despite the im-
pressive capabilities of the ITR system, multiwave-
length lidars are still expensive and complicated to
operate. Therefore it is desirable to examine the
possibility of obtaining an acceptable retrieval accu-
racy from simplified lidar systems.35,36 A lidar that
uses only a triple Nd:YAG laser already provides
backscatter coefficients at 355, 532, and 1064 nm,
and extinction coefficients at 355 and 532 nm. A few
studies meanwhile outline the potential of such a
combination of data.14,35 The number of laser wave-
lengths can be increased while a still inexpensive
laser source can be maintained if a hydrogen Raman
shifter is added. Calculations have shown that the
use of two additional backscatter coefficients, which
are provided by the Raman shifter, improves the ac-
curacy of the retrieved parameters.

From an inversion point of view it has been repeat-
edly demonstrated that, in general, particle number
concentrations are difficult to derive.14,15,33,37 De-
pending on the specific measurement situation, the
inversion into other parameters in some cases also
showed large uncertainties that require further sta-
bilizing procedure. Use of the above-mentioned re-
duced number of three backscatter and two
extinction coefficients destabilizes the inverse prob-
lem and thus also calls for the introduction of addi-
tional stabilizing tools.14,35

Here we present a modified version of the Tikhonov
approach that was developed at the Physics Instru-
mentation Center �PIC�. In the modified version we
average the solutions in the vicinity of the minimum
penalty functions, in contrast with the classical Tik-
honov method4 that accepts only that solution for
which the penalty function reaches its global mini-
mum. We observed both a significant improvement
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in retrieval accuracy of the particle parameters, as
well as the fact that the approach works for a small
number of emitted laser wavelengths.

In Section 2 we present the methodology. In Sec-
tion 3 we show the results of simulations with syn-
thetic data. In Section 4 we present the application
to experimental data and make a comparison with
airborne in situ data and two other computer codes
that were used to process the same optical data. A
summary is presented in Section 5.

2. Methodology

The inverse problem of particle size distribution re-
trieval is formulated in the form of Fredholm integral
equations. The following relations give the aerosol
backscatter and extinction coefficients:

�i � �
0

�

K��m, r, �i� f �r�dr, (1)

�i � �
0

�

K��m, r, �i� f �r�dr. (2)

where r is the particle radius; m 	 mR � imI denotes
the complex particle refractive index, with real part
mR and imaginary part mI; �i is the wavelength,
K��m, r, �i� and K��m, r, �i� are, respectively, the
backscatter and the extinction kernel functions,
which can be calculated from Mie theory in the case
of spherical particles.38 The term f �r� is the particle
size distribution expressed as the number of particles
per unit volume between r and r 
 dr. Equations �1�
and �2� can be rewritten as a generalized integral
equation:

gj��i� � �
rmin

rmax

Kj�m, r, �i� f �r�dr, (3)

where j is � or �, gj��i� are the optical data at wave-
length �i, and rmin and rmax denote the lower and the
upper limits of the particle radii.

Equation �3� has no analytical solution. A de-
tailed description of the following method of inversion
with regularization is given elsewhere.3,4 In this ap-
proach, Eq. �3� can be rewritten in the following form:

gp
� � �

rmin

rmax

Kp�m, r� f ��r�dr, (4)

where gp
� are the distorted optical data �� or ��, f � �r�

is the corresponding function that describes the par-
ticle size distribution, and p 	 j, �. The integral of
Eq. �4� can then be approximated by a sum that con-
sists of the following superposition of base functions
Bj�r�:

f ��r� � f̃ ��r� � ε � �
j

CjBj�r�dr � ε. (5)

The term f̃ ��r� is an approximated solution of Eq. �5�,
ε is the error in the solution, and Cj are constants or

so-called weight coefficients. Bj�r� are B-spline func-
tions, which in our case have a triangular shape.
These functions are given by the expression

Bj�r� � �
0; r � rj�1

1 �
rj � r

rj � rj�1
; rj�1 � r � rj

j � 1. . .N,

1 �
r � rj

rj
1 � rj
; rj � r � rj
1

0; r � rj
1

(6)

where r0 and rN
1 limit the size range within which
the inversion is performed. In the following this
range is denoted as an inversion window, and N is the
number of B-spline functions. Points rj are equally
separated inside the interval r0, rN
1�. In our algo-
rithm N always coincides with the number of optical
data. Using Eqs. �4� and �5� we can write the optical
data as a linear combination:

gp
� � �

j	1

N

Apj�m�Cj � ε�, (7)

where Apj and ε� are calculated from the kernel func-
tions, the base functions, and the errors as

Apj�m� � �
rmin

rmax

Kp�m, r� Bj�r�dr, (8)

εp
� � �

rmin

rmax

Kp�m, r�ε�r�dr. (9)

By writing the optical data as a vector g� 	 gp
��, the

weight coefficients as a vector C 	 Cj�, the errors as
a vector �� 	 εp

��, one can rewrite Eq. �7� in the
following vector–matrix form:

g� � AC � ��, (10)

where the matrix A 	 Apj� is the so-called weight
matrix, the elements of which are calculated from Eq.
�8�. The solution of Eq. �10� then gives the vector of
weight coefficients as

C � A�1g� � �, (11)

where � 	 �A�1 �� is the error vector and A�1 is the
inverse of matrix A. Hence the problem of inversion
becomes a problem of determination of weight coeffi-
cients Cj.

As outlined in Section 1, the simple solution of Eq.
�11� is in general unstable. As a consequence, it is
not possible to reconstruct the exact solution f. This
instability could be suppressed by regularization.
The idea behind it is illustrated when we rewrite Eq.
�3� in the following operator form:

Âf � g. (12)
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If instead of the exact value of g we know the approx-
imate value of g�, which means that the norm in
Euclidean space

� g � g��E � �, (13)

the essence of the regularization technique lies in the
construction of an algorithm that determines element
f̃ � appropriate to the pair �g�, ��, such that the con-

vergence f̃ �O¡
�3 0

f is realized. According to Tik-

honov and Arsenin,4 we define the function M� f, g��
as

M� f, g�� � �Âf � g��E
2 � ��� f �, (14)

where �� 	 �Âf � g��E
2 is the discrepancy, � is a non-

negative regularization parameter or so-called La-
grange multiplier, and �� f � is a penalty term that
stabilizes the inverse problem.

The solution of Eq. �12� can then be found from the
minimization of M� f̃�

�, g�� 3 min. In matrix–
vector form it is written as3

ATAC � ATg� � �HC � 0. (15)

So finally the weight coefficients can be derived from
the following relation3:

C � � ATA � �H��1ATg�. (16)

The main difference between Eq. �11� and Eq. �16� is
the so-called smoothing matrix H, which for eight
B-spline functions has the following form3:

H � �
1 �2 1 0 0 0 0 0

�2 5 �4 1 0 0 0 0
1 �4 6 �4 1 0 0 0
0 1 �4 6 �4 1 0 0
0 0 1 �4 6 �4 1 0
0 0 0 1 �4 6 �4 1
0 0 0 0 1 �4 5 �2
0 0 0 0 0 1 �2 1

� .

This smoothing matrix describes the physical con-
straint that size distributions do not show large os-
cillations within a small particle size range. The
specific form of H influences the maximum difference
between the weight factors of successive base func-
tions.3 The above-given H describes the change in
weight factors of three successive base functions,
which is equivalent to smoothness of the solution in
the second derivative.9

The Lagrange multiplier �, which can take values
from 0 to �, determines the degree of smoothing,
i.e., the strength of H. There are different meth-
ods for the choice of Lagrange multiplier, the most
common of which are the maximum-likelihood
method, the Bayesian approach, the generalized
cross-validation method, and the minimum discrep-
ancy principle.39–41 For our study we chose the
minimum discrepancy principle, because the crite-
ria are the simplest and most natural. The main

problem in the application of minimum discrepancy
is the necessity to know a priori the expected error
in the data. Otherwise the smallest discrepancy is
observed for � 3 0, and in this case the solutions
oscillate from �� to 
�. For our situation this
method can be modified. We can use the fact that
the solutions have to be positive. In our modified
discrepancy � only modules � f �� are used so f �, for
which � 	 �A� f �� � g�� minimizes the function in Eq.
�14�, are accepted as solutions. For small � the
modified discrepancy � 3 �, with the increase of �
the value of � decreases, and the solution f � 3 f.
For large � the modified discrepancy � coincides
with the classical discrepancy �� introduced in Eq.
�14�. It should be pointed out that the found solu-
tions f � could contain negative oscillations, because
the constraint of nonnegativity is applied only to
discrepancy, but not to solutions themselves.

To consider the relative errors of optical data, we
normalize the discrepancy to9

� �
1
N �

i

� gi
� � Â� f ���

gi
� .

The value of � depends on the inversion interval rmin,
rmax�, the optical data errors �, and the complex re-
fractive index of the particles. The choice of solution
in our approach includes the following steps:

The values of rmin, rmax and the complex refractive
index m 	 mR � imI are varied in the intervals �rmin,
�rmax, �mR, and �mI.

Rmin ranges from 0.05 to 0.5 �m. Rmax usually
ranges from 0.1 to 1 �m, but for the simulation of big
particle retrieval this range could be increased up to
10 �m. At the preliminary stage of calculation the
step widths of the variation of Rmin and Rmax are 0.05
and 0.1 �m, respectively. When the approximate
locations of Rmin and Rmax are established, the calcu-
lations are repeated with a step width of 0.01–0.02
�m within a smaller interval. In general, several
hundred inversion windows are considered. As a
consequence a better resolution of the investigated
particle size distribution compared to the rather lim-
ited set of 50 windows used by Müller et al.13 is
achieved. The real part, mR, ranges from 1.1 to 1.8
and the imaginary part, mI, from 0 to 0.1. After
preliminary estimation the range is decreased and
the calculations are performed with a step width of
0.01.

For every value of rmin, rmax, mR, mI within the
chosen intervals and for the set of �, the program
calculates the solution f̃�

� with Eqs. �16� and �5�.
The set of � is determined as � 	 2K10�b, where K 	
1, 2. . .25 is the calculation number. Parameter b is
chosen between 20 and 28 to achieve the minimiza-
tion of the function in Eq. �14� inside the calculation
interval. The integration step in Eq. �8� is usually
chosen to be 0.002 �m.

For each solution we determined the discrepancy
����. The f̃�

� that corresponds to the minimum of
���� is considered to be the solution of Eq. �4�.
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The use of modified discrepancy allows one to de-
termine the Lagrange multiplier without initial
guesses about data errors. An example is shown in
Fig. 1, where for synthetic optical data the discrep-
ancy � is plotted versus the calculation step K. If the
Lagrange multiplier is chosen too large, the solution
is oversmooth, and for small � it oscillates. The cor-
responding illustrations can be found in Ref. 13.

3. Simulations

A. Methodology

We performed computer simulations to estimate the
optimum number of laser wavelengths, the propor-
tions in which the backscatter and extinction coeffi-
cients should be combined, and the realistic accuracy
of the retrieved particle size parameters. We con-
sidered the laser wavelengths within the 355-nm in-
terval, which describes the triple harmonic, and
within 1064 nm, which describes the fundamental
wavelength of a Nd:YAG laser. Data obtained at
shorter wavelengths could be affected by atmospheric
ozone absorption, and the use of longer wavelengths
significantly complicates the lidar system and the
retrieval of optical data. Particle backscatter and
extinction coefficients were calculated38 under the as-
sumption of wavelength- and size-independent com-
plex refractive indices. The initial particle size
distributions, which were needed for these calcula-
tions, were assumed to be log normal:

�n�r�

� ln r
�

nt

�2��1�2 ln �
exp ��

�ln r � ln r0�
2

2�ln ��2 	 ,

where n�r� denotes the investigated particle number
concentration distribution, nt is the total number of
particles, and � describes the width of the distribu-
tion. In the retrieval procedure we generally used a
combination of particle backscatter and extinction
coefficients. We used this approach because previ-
ous findings showed that this combination allows the
retrieval not only of particle size parameters but also
the complex refractive index.13,15

As mentioned before, accurate values for the ex-
tinction coefficient can be obtained with the Raman
method, which demands high-power laser radiation.
One has to observe that the Raman scattering cross
section is proportional to ��4. For this reason, lidar
systems based on a Nd:YAG laser now provide ex-
tinction coefficients only at 355 and 532 nm but not at
1064 nm. Therefore, we restricted ourselves to ex-
tinction coefficients at 355 and 532 nm for the simu-
lations. We consider three sets of optical data. Set
1 �2� 
 3�� consists of two extinction and three back-
scatter coefficients. Set 2 �2� 
 5�� contains two
additional backscatter coefficients at 416 and 683
nm, which could be generated by Raman shifting the
double and triple laser fundamental frequency in hy-
drogen. Set 3 �2� 
 6�� consists of backscatter co-
efficients at 355, 400, 532, 710, 800, and 1064 nm,
which are the operational wavelengths of the six-
wavelength aerosol lidar of the ITR.21

In the simulations we retrieve total number �nt�,
total surface area �st�, and total volume concentra-
tions �vt�, as well as mean �rmean� and effective �reff�
radius. The latter are defined as

rmean �

�
rmin

rmax

rf �r��r

�
rmin

rmax

f �r��r

, reff �

�
rmin

rmax

r3f �r��r

�
rmin

rmax

r2f �r��r

.

Equation �3� may be written for number �NK�, surface
�SK�, and volume (VK) kernal functions.28 In gen-
eral, volume or surface kernel functions are pre-
ferred.13,14,29 In this study we applied all three
types of kernel function to the same data set in order
to test whether one should be preferred over another.

Errors in the optical data were introduced ran-
domly. If we discuss error ε in optical data, it means
that error in gi varies randomly from 0 to ε. For each
radius rj 	 rmin 
 j�rmax � rmin��N�, we calculate the
average deviation of the retrieved size distribution
from the correct one by

��rj� � 
 1
Nsol

�
i	1

Nsol

 fi�rj� � fmean�rj��
2�1�2

,

where Nsol is the number of solutions. The mean,
maximum, and minimum solutions are then defined
as

fmean �
1

Nsol
�
i	1

Nsol

fi�rj�,

fmax�rj� � fmean�rj� � ��rj�,

fmin�rj� � fmean�rj� � ��rj�.

The functions fmax and fmin allow one to estimate the
scatter of the solutions and therefore the error of the
retrieval.

Fig. 1. Discrepancy � versus Lagrange multiplier �. Calculation
number K is related to the Lagrange multiplier as � 	 2K 10�23.
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B. Simulation Results

Figure 2 illustrates the efficiency of the minimum
discrepancy criteria. For retrieval of the initial log
normal distribution with r0 	 0.3 �m, ln � 	 0.15
�m, and nt 	 1, we used three sets of optical data.
The initial refractive index was m 	 1.4 � i0.04.
In the inversion it was assumed to be unknown.
Simulations have shown that, in the absence of er-
rors in the optical data, the retrieval leads to good
results for any combination of � and �, and the more
coefficients that were used, the better the precision
of retrieval became. All three data sets permitted
the retrieval of the aerosol mean radius and num-
ber concentration to within an accuracy of better
than 1%. For volume and surface area concentra-
tion the accuracy was even better. The retrieved
complex refractive index coincided with the initial
refractive index.

The situation changed dramatically when we in-
cluded distorted optical data. Figure 3 shows the
retrieval of the same initial distribution as in Fig. 2,
but includes a distortion of 20% for the optical data.
The errors in the data were introduced randomly, so
the retrieved distribution differs for each run. We
performed the procedure ten times. Figure 3 pre-
sents the run that showed the largest deviation from
the initial distribution. The errors of the average
parameters are the largest for data set 3, when we
used six backscatter and two extinction coefficients.
This means that the inversion instability cannot be
suppressed just by increasing the number of used
coefficients. The error of the mean radius is �23%,
for number concentration it is �73%, for surface area
concentration it is �10%, and for volume concentra-
tion it is �8.5%. To improve the stability of the
inversion we suggest an averaging procedure, the
main features of which are outlined below.

C. Averaging of Solutions

The solution that corresponds to the minimum dis-
crepancy can still present significant oscillations �the
solution is insufficiently smoothed�, which leads to
errors particularly in the number concentration esti-
mation. To minimize these oscillations, it is reason-
able to consider the complete set of solutions in the
vicinity of the minimum discrepancy. Such consid-
eration should be correct, because in ill-posed prob-
lems the solutions can be numerous, so any element
f � from the set of quasi-solutions that satisfy �� f �, g��
� � should be considered as an approximate solution
of the inverse problem. So we are not searching for
a single solution, but for a class of solutions, which
would reproduce the observations with measurement
accuracy. The mean of this class can be considered
as a solution �in a certain sense�, and, as such, the
regularization approach described in Section 2 should
be considered as a tool to determine the class of so-
lutions.

Figure 4 demonstrates the advantage of an aver-
aging procedure for the example of six backscatter
and two extinction coefficients. The plot shows the
solution that corresponds to the minimum discrep-
ancy f � ��min� and the solution f � ��aver� averaged over
the interval �min, �max 	 10%�. This interval in-
cludes approximately 500 individual solutions. The
initial distribution was log normal with r0 	 0.4 �m,
ln � 	 0.3 �m, and nt 	 1. The complex refractive
index m 	 1.45 � i0.02 was assumed to be unknown
in the inversion. The mean distortion of the optical
data was 10%. If the averaging procedure is not
included, the solution f � ��min� differs significantly
from the initial log normal distribution, but after av-
eraging the retrieved distribution f � ��aver� comes
close to the initial one. The dashed curves show the
mean deviation of individual solutions � fmax and fmin�
from the average value fmean. The averaging proce-
dure takes advantage of the fact that different solu-
tions can have oscillations of opposite sign, and that,

Fig. 2. Size distribution retrieved from set 1 �2� 
 3�, crosses�,
set 2 �2� 
 5�, filled circles�, and set 3 �2� 
 6�, open circles�. The
data were assumed to be free of error �� 	 0�. The solid curve
shows the initial log normal distribution with r0 	 0.3 �m, ln � 	
0.15 �m, and nt 	 1. The initial refractive index m 	 1.4 � i0.04
was assumed to be unknown; the inversion was performed with
NK density functions.

Fig. 3. Size distribution retrieved from set 1 �crosses�, set 2 �filled
circles�, and set 3 �open circles�. The data errors were assumed to
be 20%. The solid curve shows the initial log normal distribution
with the same parameters as in Fig. 2.
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after averaging, the mean oscillation can become
much smaller than the oscillations of individual so-
lutions. It should be mentioned that, even for a
small number of basis functions, the obtained distri-
bution is smooth, because for every value of rmin and
rmax the program defines the new position of the
B-spline functions. Taking the average of many in-
dividual solutions smooths the mean solution.

The criterion of the choice of averaging interval is
illustrated in Fig. 5, where the number of solutions
Nsol inside the interval is plotted versus �max. The
interval 4%, 10%� is characterized by the highest
solution density and contains approximately 10% of
the total number of solutions. On the basis of this
criterion the choice of averaging interval does not
demand any a priori information. Even more im-

portant, this procedure is stable, i.e., the result ob-
tained does not depend strongly on the interval size.
The averaging over the interval 4%, 20%� leads to
practically the same size distribution. The interval
size depends on data errors, number of basis func-
tions, and kernel type. Usually we choose �max such
that approximately 10% of the total number of solu-
tions are inside the averaging interval. Figure 5
also shows the uncertainty of number concentration
nt, volume concentration vt, and mean radius rmean as
a function of �max. The error of rmean is approxi-
mately 15% for �min 	 4% and decreases to 1% when
the averaging is done for the 4%, 10%� interval. For
large � the error increases to only 10%, which shows
that the mean radius does not depend strongly on
�max. The averaging procedure is especially impor-
tant for the evaluation of particle number concentra-
tion nt, which in previous studies has been shown to
be affected with the largest errors.13 The solution f �

��min� leads to an error of 40% in number concentra-
tion, but after averaging this value decreases to 12%.
In fact, the number concentration also shows good
stability with respect to the choice of �max. Particle
surface area and volume concentrations are usually
more stable compared with number concentration.
The behavior of vt and st for the given example is
similar, and the uncertainty in both cases is approx-
imately 10%.

D. Refractive-Index Retrieval

One of the most remarkable features of this regular-
ization approach is that it does not need the a priori
knowledge of the complex refractive index. On the
contrary, it allows the determination of this param-
eter. The possibility of refractive-index retrieval
from multiwavelength lidar data was first outlined in
Refs. 13 and 15. In this retrieval, the combination of
particle extinction and backscatter coefficients be-
comes especially important. When the retrieval is
performed for the known refractive index, the appli-
cation of only backscattering coefficients leads to a
better result. But as soon as the variation of refrac-
tive index is considered, the retrieval with only back-
scattering coefficients becomes unstable. The
stabilizing role of extinction coefficients is illustrated
in Fig. 6, where the initial log normal distribution
with r0 	 0.15 �m, ln � 	 0.3 �m, and nt 	 1 is
retrieved from different sets of optical data. In the
simulations the number of backscattering coefficients
was set to 3, 6, or 8, and the number of extinction
coefficients was 0, 1, 2, 3, or 4. The average data
error was 10%, and for the initial distribution evalu-
ation we applied the averaging technique described
above. The refractive index m 	 1.45 � i0.02 was
unknown in the retrieval. The errors of the aerosol
parameters retrieved are summarized in Table 1.
The error of number concentration estimation was
the largest when only backscattering coefficients
were used, and it decreased from 92% to 38% when
one extinction coefficient was added. The optimal
number of extinction coefficients for this configura-
tion is 2–3 and the corresponding error of number

Fig. 4. Solutions that correspond to the minimum discrepancy
�filled circles� and averaged over the interval of 2% � � � 10%
�open circles�. The distortion of the optical data is 10%. The
solid curve shows the initial log normal distribution with r0 	 0.4
�m, ln � 	 0.3 �m, and nt 	 1. Set three of optical data were
used. The initial refractive index m 	 1.45 � i0.02 was assumed
to be unknown. The inversion was performed with VK functions.
The dashed curves indicate the mean-square deviation of individ-
ual solutions from the average value.

Fig. 5. Errors of number �nt� and volume concentration �vt� and of
mean radius rmean versus the averaging interval �max. The dotted
curve shows the relative number of solutions Nsol inside the aver-
aging interval. The dash–dot vertical line represents the bound-
ary of the averaging interval used for the retrieval.
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density estimation is decreased to 16%. During
modeling we experimented with extinction coeffi-
cients at different wavelengths from 355 to 700 nm,
and we found a stabilizing effect for each. So the
combination of backscatter and extinction coefficients
allows a compromise to be achieved. The results of
our simulation lead to similar findings as already
given in Refs. 13 and 15. The number of backscatter
coefficients in the retrieval procedure should exceed
the number of extinction coefficients by a factor of
2–3.

For retrieval of the complex refractive index, we
used the averaging procedure in the same way as for
the other aerosol parameters. But for the refractive-
index retrieval we cannot use a too-large averaging
interval, because for large �max the refractive index m
3 �mmax 
 mmin��2. In this case all possible solu-
tions are averaged, and the averaging procedure loses
its meaning. The averaging interval that contains
10% of solutions is usually a good compromise for
both size distribution and refractive-index retrieval.
Simulation results for the refractive-index retrieval
are presented in Fig. 7. The correct complex refrac-
tive index in the simulation was m 	 1.45 � i0.02.
The real and imaginary parts of the refractive index
are plotted as a function of �max. For the simulation
we used three sets of optical data �2� 
 3�, 2� 
 5�,
2� 
 6�� and all three types of kernel function. For

this example �min was 1% and �max should be taken
around 7%. Approximately 10% of the total number
of solutions is concentrated in this interval. In these
simulations all three types of kernel function lead to
similar results. Furthermore Fig. 7 shows that the
retrieved refractive index for the number and the
volume kernel functions is 1.47 � i0.03. This figure
again emphasizes the advantage of averaging: the
solutions that correspond to the minimum discrep-
ancy can differ for different data sets, but the aver-
aging creates similar results.

E. Accuracy of Retrieval

To estimate the uncertainty of the retrieved param-
eters from experimental data we can consider the
average square deviation of individual solutions.
We should however keep in mind that this overesti-
mates the uncertainty, and, as shown in Fig. 4, the
actual accuracy is better after averaging. Another
possibility is to perform the simulations for different
mean radii and optical parameter combinations.
We performed such simulations for the three sets of
optical data, which are the focus of our study, i.e.,
2� 
 3�, 2� 
 5�, 2� 
 6�. The uncertainty de-
pends on the mean radius. It is minimal in the cen-
ter of the interval �min � rmean � �max and it rises

Fig. 6. Illustration of the stabilizing role of extinction coefficients.
The retrieval is performed for 8� �filled circles�, 8� 
 � �open
circles�, 8� 
 2� �stars�, 8� 
 4� �crosses�. Average data distor-
tions are 10%. The solid curve represents the initial log normal
distribution with r0 	 0.15 �m, ln � 	 0.3 �m and nt 	 1. The
initial refractive index m 	 1.45 � i0.02 was assumed to be un-
known. The inversion was performed with VK functions.

Fig. 7. Retrieval of particle complex refractive index. The real
�circles and triangles� and imaginary �squares� parts are plotted
versus the averaging interval �max. For the simulation the correct
refractive index m 	 1.45 � i0.02 was used. The distortion of the
optical data was 10%. For the retrieval the VK functions were
applied to 2� 
 3� �open symbols� and to 2� 
 6� �filled symbols�
data sets. The dash–dot vertical line represents the boundary of
the averaging interval used for the retrieval. The initial size
distribution was the same as in Fig. 4.

Table 1. Errors of Aerosol Parameter Retrieval for Different Combinations of Aerosol Backscatter and Extinction Coefficients

Parameter 8� �%� 8� �%� 8� 
 � �%� 8� 
 2� �%� 8� 
 4� �%� 6� 
 2� �%� 3� 
 2� �%�

rmean 18 13 2 1 8 1 1
reff 14 1 1.4 2 1 3 3
nt 92 58 38 16 29 18 13
St 11 29 20 14 15 16 18
Vt 6 29 20 14 14 19 20
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near the interval boundaries. The 10% errors were
introduced into the optical data. Simulation was
performed for initial log normal distribution with ln
� 	 0.3 �m, so rmean � 1.1 r0, and the distortion of
optical data was 10%. To estimate the retrieval ac-
curacy, the procedure was repeated twenty times for
each mean radius, and the maximum deviation of the
retrieved parameters from the theoretical ones was
used as the measure of accuracy. The results of the
simulations for different values of particle mean radii
for data sets 1 and 2 are summarized in Table 2.
The results obtained for set 3 are close to the results
for set 2. All three types of kernel function lead to
similar uncertainties. The results of the simula-
tions shown in Table 2 can be summarized as follows:

The chosen set of wavelengths permits the re-
trieval of aerosol parameters for the radii 0.1 �m �
rmean � 1 �m.

The application of three, five, or six wavelengths,
corresponding to five, seven, and eight coefficients
leads to a similar uncertainty level of particle param-
eter estimation. But for an evaluation of the shape
of the size distribution three wavelengths are insuf-
ficient. The solutions found present strong oscilla-
tions. On the other hand, an increase in the number
of backscatter coefficients from six to eight did not
improve the accuracy of retrieval. These findings
strongly support the requirement for data combina-
tion made previously.13–15 The retrieval of the par-
ticle complex refractive index is unstable for small
particles, and for rmean � 0.1 �m it becomes unbe-
lievable. In contrast, for large particles the results
are quite stable and the accuracy of the real part
estimation is �0.05. The accuracy of the retrieved
imaginary part is better than 50%; see also the find-
ings reported in Ref. 15.

The most stable parameter in the retrieval is the
particle surface area concentration. The uncer-
tainty is approximately 10% for rmean � 0.1 �m.

The different kinds of kernel function lead to sim-
ilar results in mean parameter estimations and size
distribution shape retrieval, so we cannot conclude
that one type of kernel function is preferable to an-
other. This observation sheds new light on previous
approaches in which the volume and surface area
density kernels were preferred over number density
kernels, because these kernels increase the sensitiv-
ity toward retrieved parameters. Simulations here
indicate that the additional averaging procedure in-
troduced sufficiently stabilizes the inverse ill-posed
problem so that the number density kernel can be

used as well. However the complexity of the depen-
dency of the solutions on individual input parameters
and their uncertainties does not currently provide a
final answer on this issue but rather requires further
sensitivity studies.

When the 20% optical data error was considered,
the uncertainty level was the same in the middle of
the 0.1 �m � rmean � 1 �m interval, but near the
boundaries the uncertainty almost doubled. Still we
believe that the Raman technique allows one to
achieve a 10% accuracy in the evaluation of the op-
tical coefficients, so the uncertainties listed in Table
2 are realistic.

4. Application to Experimental Data

The PIC developed algorithm was applied to six-
wavelength lidar data obtained within the frame-
work of the Lindenberg Aerosol Characterization
Experiment 98 �LACE 98�.42 It was conducted at
the Meteorological Observatory in Lindenberg
�52.2 °N, 14.1 °E� during July and August 1998.
Several additional surface-based and airborne lidar
systems as well as characterization of particle prop-
erties from airborne platforms allowed high-quality
data to be retrieved. These data were used for the
validation of two other inversion schemes, i.e., from
the ITR13 and from the Institute of Mathematics
�IM�14 at the University of Potsdam, Germany. De-
tailed descriptions of these results are given in Refs.
37 and 43. All the lidar measurements were per-
formed at night.

For the testing, we used two measurement cases.
The first describes the measurement from 9 August
1998. A particle layer was observed in the free tro-
posphere in the altitude range from 3 to 6 km. This
layer resulted from intense biomass burning in
northwestern Canada, approximately six days prior
to the lidar observations. For the inversion we chose
two altitude ranges, i.e., from 4200 to 5400 m and
from 3500 to 4000 m. The latter describes the con-
ditions within the center of the pollution plume.
The second case was the measurement taken during
the evening of 11 August 1998. In this case we ob-
served a polluted boundary layer that resulted from
advection of air masses from within the European
continent.

For both measurements the results could be com-
pared to airborne in situ observations of particle
properties. On 9 August 1999, an aircraft flew dur-
ing the time of the lidar measurement.37,43 Because
the relative humidity in this particle layer was below

Table 2. Errors � of the Particle Parameter Estimation for Two Nd:YAG Lasersa

r0 ��m� εRmean �%� εReff �%� εn �%� εs �%� εv �%� εmR εmI �%�

0.1 20�20 20�10 70�50 55�40 50�35 �0.08��0.07 50�50
0.5 20�15 15�15 45�30 10�10 20�20 �0.07��0.05 50�50
1 40�30 60�55 60�50 10�10 80�60 �0.05��0.05 50�50

aOne laser was a triple Nd:YAG and the second was combined with a hydrogen Raman shifter �3� 
 2��5� 
 2��. Retrieval is
performed with NK density functions.
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50%, it was not necessary to apply correction for hy-
groscopic growth. On 11 August 1998, aircraft mea-
surements were performed several hours prior to the
lidar observations.37 Because of the different mea-
surement times backward trajectory analysis was
used to identify those height ranges of the in situ
observations, which were assumed to be comparable
to the height ranges for which the lidar observations
were used in the inversion. In addition the correc-
tion for hygroscopic growth, which was necessary for
this measurement case, introduced additional uncer-
tainty. A detailed outline of the error analysis is
given in Ref. 37.

In the following we focus on the height range from
3500 to 4000 m of the particle layer observed on 9
August 1998. The ITR and the IM algorithms had
been tested for the complete data set, which consisted
of six backscatter and two extinction coefficients
�2� 
 6��. Another test was done for the ITR algo-
rithm with the reduced data set of three backscatter
and two extinction coefficients �2� 
 3��, the results
of which are described in detail in Ref. 32.

Figure 8 shows the particle size distribution re-

trieved for the lidar measurements by the use of NK
and VK density functions. The results obtained
with the surface kernel density functions are always
between the NK and the VK functions. The results
of the retrieval are summarized in Table 3. Figure 9
illustrates the estimation of the particle parameters.
The particle effective radius, number, surface area,
and volume concentration are plotted versus the size
of the averaging interval. With respect to the effec-
tive radius the minimum discrepancy for the NK for
the 2� 
 6� set is around �min 	 1.2%, and the high-
est solution density is inside the 1.2%, 8%� interval.
For the 2� 
 3� set �min � 0.1% for all kernel types.
Inside the averaging interval the value of reff calcu-
lated with the VKs for a full data set smoothly varies
from 0.26 to 0.31 �m so the value of reff must be taken
in the middle of this interval with the uncertainty of
retrieval covering the maximum and minimum val-
ues, thus giving reff 	 0.28 � 0.04 �m. For NK the
variation of reff inside the averaging interval is
larger, from 0.27 to 0.35 �m, so reff 	 0.31 � 0.04 �m.
The VKs created a higher number concentration
�185 � 90 cm�3� in comparison with the NK results
�160 � 80 cm�3�. Still the difference is within the
uncertainty, which we list in Table 2 for this radius.
The surface area concentration varies from 118 to 125
�m2cm�3 for the VK and from 117 to 125 �m2cm�3

for the NK. This parameter is the most stable one in
the retrieval. The volume concentration takes val-
ues between 10.5 and 14.5 �m3cm�3 for the different
kernel functions. The real part of the refractive in-
dex changes from 1.62 to 1.52 for VKs and from 1.61
to 1.48 for NK. Although the mean values obtained
with both types of kernel are close, the retrieval with
the VKs is again more stable, so the uncertainty is
less. The imaginary part of the refractive index is
approximately 0.03 for all the kernels and data sets.
The inversion of the reduced data set leads to similar
parameter values. The retrieved aerosol parame-
ters are in reasonable agreement with the results of
the ITR and IM codes and in situ measurements,
although the PIC code provides lower values of aero-
sol number concentration.

The observed difference in the inversion with the
density of the NK and the VK was unexpected for us,
because during the simulation with synthetic data

Fig. 8. Particle size distribution retrieved from the ITR multi-
wavelength lidar data on 9 August 1998 for the height interval
from 3500 to 4000 m. The distributions were obtained by the use
of NK �squares� and VK density �circles� functions. For the in-
version we used 2� 
 6� �filled symbols� and 2� 
 3� �open sym-
bols� data sets.

Table 3. Physical Particle Parametersa

Parameter

ITR Algorithm
IM Algorithm

Full Set
VK

PIC Algorithm
Falcon, in situ
Particles with

r � 50 nm
Full Set

VK
3� 
 2�

VK
Full Set

VK
3� 
 2�

VK
Full Set

NK
3� 
 2�

NK

reff ��m� 0.27 � 0.04 0.27 � 0.04 0.24 � 0.01 0.28 � 0.04 0.28 � 0.04 0.31 � 0.04 0.31 � 0.04 0.25 � 0.07
nt �cm�3� 291 � 70 305 � 120 506 � 131 185 � 90 200 � 100 160 � 80 155 � 80 271 � 74
vt ��m3 cm�3� 13 � 2 13 � 2 11 � 1 12 � 3 12 � 3 12.5 � 3 13.5 � 4 8 � 5
st ��m2 cm�3� 139 � 7 145 � 8 136 � 5 122 � 20 122 � 20 125 � 20 126 � 20 95 � 55
mR 1.64 � 0.09 1.63 � 03 1.66 � 0.02 1.57 � 0.05 1.58 � 0.06 1.55 � 0.07 1.52 � 0.07 1.56
mI 0.05 � 0.02 0.05 � 0.02 0.053 � 0.004 0.03 � 0.015 0.03 � 0.015 0.03 � 0.015 0.035 � 0.015 0.07

aFrom the inversion of lidar data obtained from measurements in the height region from 3500 to 4000 m on 9 August 1998, 2200–2400
UTC, and from in situ measurements of particle size distributions from 3400 to 3900 m aboard an aircraft. The NK and VK density
functions are applied to the full and reduced �3� 
 2�� data sets, respectively.
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both kernel types led to similar results. To illus-
trate this we have chosen the initial log normal dis-
tribution with r0 	 0.2 �m, which is close to the
distributions presented in Fig. 8. Figure 10 shows
the size distributions retrieved with the NK and the

VK and for 10% data errors. Both types of kernel
lead to similar concentrations, and the density of the
NKs for this example reproduce the initial distribu-
tion even better than the VKs. One possible expla-
nation of the observed difference in the case of the

Fig. 9. Retrieval of particle parameters from six-wavelength observations on 9 August 1998 for the height interval from 3500 to 4000 m.
�a� Effective radius, �b� number, �c� surface area, and �d� volume concentrations, and �e� real and �f � imaginary parts of the refractive index
versus the averaging interval for solutions obtained with NK, SK, and VK density functions. The NK applied to the full set of data �filled
symbols� and to data obtained from a triple Nd:YAG laser �2� 
 3�, open symbols�. The dotted curve in �a� shows the relative amount
of solutions Nsol inside the averaging interval for the NK functions. The dash–dot vertical line represents the boundary of the averaging
interval used for the retrieval.
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inversion of experimental data could be that we per-
formed simulations for a single type of particle,
whereas the real aerosol is a mixture of particles with
different refractive indices. In fact, detailed analy-
sis of the in situ data pointed toward an external
rather than an internal mixture of particle types.37

Still the observed difference is smaller than the esti-
mated uncertainty of the method. It should also be
noted, that the absence of spikes in the distributions
presented in Fig. 8 and the concentration of solutions
in the interval with �max � 8% indicates that the
mean error for these measurements is less than 10%.

The results obtained from the reduced data set for
both the PIC and the ITR codes do not differ signifi-
cantly from those obtained with the complete data
set. However we note a slight increase of the uncer-
tainty of the retrieved parameters in each case. It is
worth mentioning that the same result, i.e., an in-
crease of the uncertainty, has been found from the
ITR algorithm. On the one hand the results for the
experimental data further strengthen the argument
that the use of a Raman lidar, which uses only one
Nd:YAG laser, might be sufficient to provide impor-
tant particle parameters.35 On the other hand the
increased uncertainty levels call for further investi-

gation of the general applicability of the inversion
schemes to the reduced data sets.

Table 4 summarizes the results obtained for the
height range from 4400 to 5000 m on 9 August 1998.
Again NK and VK were used for inversion of the
complete and the reduced data set. The respective
parameters obtained from the different kernel types
and data combinations differ insignificantly within
the uncertainties. The effective radius obtained
with the NK is approximately 0.112 �m. With the
VK it is approximately 0.110 �m. The number con-
centration shows a larger difference. It is 850 cm�3

for the VKs and 700 cm�3 for the NKs. The surface
area concentration varies between 95 and 100
�m2cm�3. The volume concentration takes values
between 3.5 and 3.7 �m3cm�3 for the different kernel
functions. The real part of the refractive index
changes from 1.58 to 1.60, the imaginary part pre-
sents significant uncertainty, and we estimate it to be
0.01 � 0.01.

With respect to the size parameters all three algo-
rithms show comparable values within the uncer-
tainty for the lower height range on 9 August 1998.
The largest scatter was found for number concentra-
tion for which the IM algorithm gives considerably
higher values than the PIC algorithm. The ITR val-
ues lie between the two. The ITR and IM algorithms
give the same complex refractive index. The PIC
algorithm underestimates this parameter, particu-
larly with respect to the imaginary part. The in situ
data were restricted to particle sizes above 50 nm in
radius, which is at the lower end of the optically
active size range. In general the in situ size param-
eters and the real part of the complex refractive index
are lower than the ones from the inversion. Yet
there is acceptable agreement. In contrast, a larger
imaginary part was derived from the in situ observa-
tions. In this context we should again mention that
the complex refractive index from the in situ obser-
vations was derived on the assumption of an internal
mixture of particles. In fact, the observations
showed an external mixture. Further details can be
found in Ref. 37. The mean deviation of all the pa-
rameters derived with the PIC algorithm for the in
situ values is approximately 30–35%. The lowest
deviation of 27% is given by the ITR algorithm for the
lower height range. It is 34% for the IM algorithm.

Fig. 10. Size distribution retrieved with VK �filled circles� and NK
�open circles� density functions. The solid curve shows the initial
log normal distribution with r0 	 0.2 �m, ln � 	 0.4 �m and nt 	
1. Optical data distortion is 10%, the refractive index m 	 1.54 �
i0.02 was suggested to be unknown during the inversion.

Table 4. Same as Table 3 but for Lidar Measurements from 4200 to 5400 m and in situ Data from 4400 to 5000 m

Parameter

ITR
Algorithm

Full Set VK

IM
Algorithm

Full Set VK

PIC Algorithm

Falcon, in situ Particles
with r � 50 nmFull Set NK

3� 
 2�
NK Full Set VK

reff ��m� 0.23 � 0.02 0.16 � 0.01 0.11 � 0.02 0.11 � 0.03 0.11 � 0.02 0.18 � 0.05
nt �cm�3� 663 � 224 973 � 316 700 � 350 750 � 400 850 � 400 354 � 74
vt ��m3cm�3� 3.4 � 0.4 2.3 � 0.2 3.5 � 1 3.7 � 1 3.7 � 1 6 � 3
st ��m2cm�3� 44 � 1 44 � 3 95 � 40 100 � 50 100 � 40 91 � 53
mR 1.76 � 0.05 1.77 � 0.02 1.60 � 0.07 1.58 � 0.08 1.59 � 0.07 —
mI 0.046 � 0.005 0.043 � 0.01 0.01 � 0.01 0.01 � 0.01 0.01 � 0.01 —
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With respect to the upper height range large spa-
tial inhomogeneities of the volume concentration dis-
tributions were found in Ref. 42. Time–height plots
of backscatter coefficients from lidar also show large
inhomogeneities at this height range.37 Complex re-
fractive indices from in situ data were not provided
for this height range. So a comparison for this pa-
rameter is possible only among the three inversion
results. Large differences between the three algo-
rithms were found for effective radius and surface
area concentration and for the imaginary part of the
complex refractive index. Again the PIC algorithm
underestimates the complex refractive indices pro-
vided by the ITR and the IM. The mean deviation
for the in situ values increases to 46–57% for the PIC
algorithm. The deviation for the ITR algorithm in-
creases to 53%, and the deviation for the IM increases
to 75%.

Table 5 shows the results for the height range from
1420 to 1700 m of the measurement from 11 August
1998. Comparison with the in situ parameters is
complicated by the fact that a correction for hygro-
scopic growth had to be applied. If we consider the
results only for 75% relative humidity, the parame-
ters of the PIC algorithm deviate by less than 50% for
effective radius, volume, and surface area concentra-
tion, and the real part of the complex refractive index.
The imaginary part is a factor of 2 lower in the case
of inversion with NK density, but 50% larger if VKs
are used. The number concentration is a factor of
2–3 larger than the in situ values if the two kernel
types are used in the inversion.

The PIC algorithm provided the lowest mean devi-

ation of approximately 23–27% for the in situ values.
The ITR algorithm showed a mean deviation of 49%,
and the IM algorithm deviated by approximately
41%. For calculation of the mean deviation, number
concentration was not included because reasonable
number concentrations could not be provided by the
other two algorithms. The uncertainties were
larger than the respective mean values that reached
several times 10,000 cm�3, indicating a failure of the
regularization.37 Only the PIC algorithm provided
somewhat reasonable values for this parameter.

Table 6 shows the results for the lower height
range on 11 August 1998. The PIC algorithm gives
lower volume, surface area, and number concentra-
tions than the ITR and the IM algorithms. Number
concentration for this example is 1 order of magni-
tude lower. The real part is between the ITR and
the IM values. The imaginary parts in all three al-
gorithms are close. The best mean performance for
this height range was achieved with the PIC algo-
rithm. The number concentration was especially
close to the in situ data. The mean deviation was
53–57%. The number concentration was again
omitted in these calculations for the reasons given
above.

5. Conclusion

We have developed a rather simple modification of a
regularization algorithm, which is based on the min-
imum discrepancy criterion. The code retrieves par-
ticle size parameters from lidar observations at
multiple wavelengths. Computer simulations dem-
onstrate that application of the algorithm even to a

Table 5. Physical Particle Parametersa

Parameter

ITR
Algorithm

Full Set VK
IM Algorithm
Full Set VK

PIC Algorithm Partenavia in situ r � 50 nm

Full Set NK
3� 
 2�

NK Full Set VK Dry 75% Humidity

reff ��m� 0.12 � 0.02 0.11 � 0.002 0.19 � 0.02 0.2 � 0.02 0.17 � 0.02 0.17 � 0.03 0.24 � 0.05
nt �cm�3� — — 1860 � 900 1430 � 700 2940 � 1500 858 � 56 858 � 56
vt ��m3cm�3� 35 � 7 23 � 1 34 � 8 34 � 8 33 � 8 11 � 3 32 � 8
st ��m2cm�3� 921 � 221 624 � 30 535 � 200 515 � 200 590 � 200 194 � 54 400 � 130
mR 1.58 � 0.1 1.74 � 0.02 1.51 � 05 1.52 � 0.05 1.61 � 0.07 1.53
mI 0.01 � 0.02 0.031 � 0.0001 0.01 � 0.01 0.01 � 0.01 0.03 � 0.015 0.02

aFrom inversion of lidar data obtained from measurement in the height region from 1420 to 1700 m on 11 August 1998, 2020–2220 UTC,
and from in situ measurements of particle size distributions from 2000 to 2400 m at 1230 UTC.

Table 6. Same as Table 5 but for Lidar Measurements from 900 to 1000 m and in situ Measurements from 500 to 900 m

Parameter

ITR
Algorithm

Full Set VK
IM Algorithm
Full Set VK

PIC Algorithm Partenavia in situ r � 50 nm

Full Set NK
3� 
 2�

NK Full Set VK Dry 40% Humidity

reff ��m� 0.13 � 0.02 0.15 � 0.02 0.14 � 0.02 0.14 � 0.02 0.14 � 0.02 0.14 � 0.01 0.16 � 0.01
nt �cm�3� 11193 � 6609 18455 � 5312 1450 � 700 1440 � 700 1740 � 800 607 � 89 607 � 89
vt ��m3cm�3� 29 � 3 18 � 1 13 � 4 12 � 4 13.5 � 5 5 � 1 7 � 1
st ��m2 cm�3� 696 � 38 616 � 45 280 � 50 250 � 50 300 � 60 100 � 19 131 � 20
mR 1.48 � 0.03 1.62 � 0.02 1.56 � 05 1.6 � 0.07 1.56 � 0.05 1.53
mI 0.008 � 0.003 0.008 � 0.003 0.01 � 0.01 0.01 � 0.01 0.01 � 0.01 0.02
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simplified set of lidar data obtained from a triple
Nd:YAG laser, which might provide backscatter co-
efficients at 355, 532, and 1064 nm and extinction
coefficients at 355 and 532 nm, allows the estimation
of important microphysical particle parameters, i.e.,
effective radius, volume, surface area, and number
concentration, and the complex refractive index
within the radius range from 0.1 to 1 �m. The de-
velopment of such a relatively inexpensive lidar
equipment with the capability to estimate these par-
ticle parameters significantly extends the area of li-
dar application. The retrieval accuracy might be
improved if we combine a triple Nd:YAG laser with a
hydrogen Raman shifter, which would add two more
backscatter coefficients at 416 and 683 nm.

The common approach in the inversion with reg-
ularization is to select only those solutions for
which the regularization or minimum discrepancy
term takes its minimum. In the modification de-
veloped here we average all individual solutions
that are within a certain range around this mini-
mum solution. As a consequence, the stability of
the inversion, particularly with respect to number
concentration, could be increased significantly com-
pared with current approaches. In the simula-
tions we also tested the influence of the number,
surface area, and VK functions on the inversion
results. These functions are input parameters for
the algorithm. They describe backscatter or ex-
tinction for single particles. In general we ob-
served no significant differences of the kernel
functions for the different data combinations used
in this study. Still we applied both NK and VK
functions to each data set, and the uncertainty of
retrieval covered the difference in the results that
we obtained.

We compared the results of this algorithm with
those of two other regularization codes, which are in
routine operational use, and with results of aircraft
in situ measurements. The optical data sets, which
were obtained within the framework of the LACE 98,
describe a biomass-burning particle layer and an an-
thropogenically polluted boundary layer. The quite
different particle properties provided a benchmark
test for the performance capabilities of the inversion.
For the biomass-burning layer the presented algo-
rithm showed good agreement with the results from
the other two algorithms. Mean deviation to the in
situ observation ranged from 30 to 57% and thus was
within the range given by the other two algorithms.
For the polluted boundary layer we found larger dis-
crepancies than were found with the other two inver-
sion schemes. The average deviation from the in
situ observations was 23–57% and thus outperformed
the results of the other two schemes. This was par-
ticularly the case for number concentration and
might be the result of the additional averaging of
solutions. However, we also noted a systematic un-
derestimation of the complex refractive index. In
general, the imaginary part was lower by a factor of
2 compared with the in situ data. We observed a

maximum deviation of a factor of 4 compared with the
results from the other two inversion schemes.

Our main goal was to establish the utility of the
averaging procedure to determine the final solution,
which was done for a monomodal size. We also per-
formed preliminary retrievals for bimodally distrib-
uted aerosols indicating that the integral
parameters, such as effective radius and the densities
�number, volume, and surface�, could be estimated.
However, the accurate retrieval of a bimodal size dis-
tribution places a strong requirement on the quality
and number of the input data and is the subject of
future research.

The results presented here strengthen the tech-
nique for remote quantification of aerosols by use of
lidar. These measurements provide new informa-
tion about aerosol properties that would be useful for
the study of the influence of aerosols on climate. It
is interesting to point out as well that cloud liquid
water measurements have also been made by use of
Raman lidar.44,45 A retrieval technique has been
demonstrated that uses Raman lidar measurements
to quantify remotely cloud liquid water, cloud droplet
radius, and cloud droplet number density.46 The
combination of these cloud measurements with those
of the aerosols demonstrated here could permit all
essential parameters that are necessary for the study
of the indirect effect of aerosols to be measured with
Raman lidar.
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